In [3]:
%matplotlib inline

Simple Downsampling technique for Clarity brains


In [10]:
import os
os.chdir('/Users/albert/ndreg')

In [11]:
from ndreg import *
import matplotlib
import ndio.remote.neurodata as neurodata
import nibabel as nb

In [13]:
inImg = imgRead("../atlasfull.nii")
imgShow(inImg, vmax=500)



In [15]:
print(inImg.GetSpacing())


(0.018719999119639397, 0.004999999888241291, 0.018719999119639397)

In [16]:
inImg = imgResample(inImg, spacing=(1.8719999119639397, .04999999888241291, 1.8719999119639397))
imgShow(inImg, vmax=500)



In [21]:
imgWrite(inImg, "../seelviz/miniatlas.nii")

In [22]:
inImg = imgRead("../seelviz/miniatlas.nii")
imgShow(inImg, vmax=500)



In [28]:
inImg = imgResample(inImg, spacing=(3.6719999119639397, .16999999888241291, 3.6719999119639397))
imgShow(inImg, vmax=500)



In [29]:
imgWrite(inImg, "../seelviz/miniatlas.nii")

In [27]:
inImg = imgRead("../seelviz/miniatlas.nii")
imgShow(inImg, vmax=500)



In [31]:
inImg = imgResample(inImg, spacing=(1.8719999119639397, .04999999888241291, 1.8719999119639397))
imgShow(inImg, vmax=500)


As shown above, a huge limitation to downsampling is a loss of data such that reconversions to a higher quality are not advised.